Source code for mim.commands.train

# Copyright (c) OpenMMLab. All rights reserved.
import os
import os.path as osp
import random as rd
import subprocess
import sys
from typing import Optional, Tuple, Union

import click

from import CustomCommand, param2lowercase
from mim.utils import (

PYTHON = sys.executable

@click.argument('package', type=str, callback=param2lowercase)
@click.argument('config', type=str)
    type=click.Choice(['none', 'pytorch', 'slurm'], case_sensitive=False),
    help='Job launcher')
    help=('The port used for inter-process communication (only applicable to '
          'slurm / pytorch launchers). If set to None, will randomly choose '
          'a port between 20000 and 30000. '))
    '-G', '--gpus', type=int, default=1, help='Number of gpus to use')
    help=('Number of gpus per node to use '
          '(only applicable to launcher == "slurm")'))
    help='Number of cpus per task (only applicable to launcher == "slurm")')
    help='The partition to use (only applicable to launcher == "slurm")')
    '--srun-args', type=str, help='Other srun arguments that might be used')
@click.option('-y', '--yes', is_flag=True, help='Don\'t ask for confirmation.')
@click.argument('other_args', nargs=-1, type=click.UNPROCESSED)
def cli(package: str,
        config: str,
        gpus: int,
        gpus_per_node: int,
        partition: str,
        cpus_per_task: int = 2,
        launcher: str = 'none',
        port: int = None,
        srun_args: Optional[str] = None,
        yes: bool = False,
        other_args: tuple = ()) -> None:
    """Perform Training.


    # Train models on a single server with CPU by setting `gpus` to 0 and
    # 'launcher' to 'none' (if applicable). The training script of the
    # corresponding codebase will fail if it doesn't support CPU training.
    > mim train mmcls --work-dir tmp --gpus 0
    # Train models on a single server with one GPU
    > mim train mmcls --work-dir tmp --gpus 1
    # Train models on a single server with 4 GPUs and pytorch distributed
    > mim train mmcls --work-dir tmp --gpus 4 \
        --launcher pytorch
    # Train models on a slurm HPC with one 8-GPU node
    > mim train mmcls --launcher slurm --gpus 8 \
        --gpus-per-node 8 --partition partition_name --work-dir tmp
    # Print help messages of sub-command train
    > mim train -h
    # Print help messages of sub-command train and the training script of mmcls
    > mim train mmcls -h
    is_success, msg = train(

    if is_success:
        echo_success(msg)  # type: ignore

[docs]def train( package: str, config: str, gpus: int, gpus_per_node: int = None, cpus_per_task: int = 2, partition: str = None, launcher: str = 'none', port: int = None, srun_args: Optional[str] = None, yes: bool = True, other_args: tuple = () ) -> Tuple[bool, Union[str, Exception]]: """Train a model with given config. Args: package (str): The codebase name. config (str): The config file path. If not exists, will search in the config files of the codebase. gpus (int): Number of gpus used for training. gpus_per_node (int, optional): Number of gpus per node to use (only applicable to launcher == "slurm"). Defaults to None. cpus_per_task (int, optional): Number of cpus per task to use (only applicable to launcher == "slurm"). Defaults to None. partition (str, optional): The partition name (only applicable to launcher == "slurm"). Defaults to None. launcher (str, optional): The launcher used to launch jobs. Defaults to 'none'. port (int | None, optional): The port used for inter-process communication (only applicable to slurm / pytorch launchers). Default to None. If set to None, will randomly choose a port between 20000 and 30000. srun_args (str, optional): Other srun arguments that might be used, all arguments should be in a string. Defaults to None. yes (bool): Don\'t ask for confirmation. Default: True. other_args (tuple, optional): Other arguments, will be passed to the codebase's training script. Defaults to (). """ full_name = module_full_name(package) if full_name == '': msg = f"Can't determine a unique package given abbreviation {package}" raise ValueError(highlighted_error(msg)) package = full_name # If launcher == "slurm", must have following args if launcher == 'slurm': msg = ('If launcher is slurm, ' 'gpus-per-node and partition should not be None') flag = (gpus_per_node is not None) and (partition is not None) assert flag, msg if port is None: port = rd.randint(20000, 30000) if launcher in ['slurm', 'pytorch']: click.echo(f'Using port {port} for synchronization. ') if not is_installed(package): msg = (f'The codebase {package} is not installed, ' 'do you want to install the latest release? ') if yes or click.confirm(msg): click.echo(f'Installing {package}') cmd = ['mim', 'install', package] ret = subprocess.check_call(cmd) if ret != 0: msg = f'{package} is not successfully installed' raise RuntimeError(highlighted_error(msg)) else: click.echo(f'{package} is successfully installed') else: msg = f'You can not train this model without {package} installed.' return False, msg pkg_root = get_installed_path(package) if not osp.exists(config): # configs is put in pkg/.mim in PR #68 config_root = osp.join(pkg_root, '.mim', 'configs') if not osp.exists(config_root): # If not pkg/.mim/config, try to search the whole pkg root. config_root = pkg_root # pkg/.mim/configs is a symbolic link to the real config folder, # so we need to follow links. files = recursively_find( pkg_root, osp.basename(config), followlinks=True) if len(files) == 0: msg = (f"The path {config} doesn't exist and we can not find " f'the config file in codebase {package}.') raise ValueError(highlighted_error(msg)) elif len(files) > 1: msg = ( f"The path {config} doesn't exist and we find multiple " f'config files with same name in codebase {package}: {files}.') raise ValueError(highlighted_error(msg)) # Use realpath instead of the symbolic path in pkg/.mim config_path = osp.realpath(files[0]) click.echo( f"The path {config} doesn't exist but we find the config file " f'in codebase {package}, will use {config_path} instead.') config = config_path # tools will be put in package/.mim in PR #68 train_script = osp.join(pkg_root, '.mim', 'tools', '') if not osp.exists(train_script): train_script = osp.join(pkg_root, 'tools', '') common_args = ['--launcher', launcher] + list(other_args) if launcher == 'none': cmd = [PYTHON, train_script, config] + common_args help_msg = subprocess.check_output([PYTHON, train_script, '-h']) if '--gpus' in help_msg.decode(): # OpenMMLab 1.0 should add the `--gpus` or `--device` flags. if gpus: cmd += ['--gpus', str(gpus)] else: cmd += ['--device', 'cpu'] elif launcher == 'pytorch': cmd = [ PYTHON, '-m', 'torch.distributed.launch', f'--nproc_per_node={gpus}', f'--master_port={port}', train_script, config ] + common_args elif launcher == 'slurm': parsed_srun_args = srun_args.split() if srun_args else [] has_job_name = any([('--job-name' in x) or ('-J' in x) for x in parsed_srun_args]) if not has_job_name: job_name = osp.splitext(osp.basename(config))[0] parsed_srun_args.append(f'--job-name={job_name}_train') cmd = [ 'srun', '-p', f'{partition}', f'--gres=gpu:{gpus_per_node}', f'--ntasks={gpus}', f'--ntasks-per-node={gpus_per_node}', f'--cpus-per-task={cpus_per_task}', '--kill-on-bad-exit=1' ] + parsed_srun_args + [PYTHON, '-u', train_script, config ] + common_args cmd_text = ' '.join(cmd) click.echo(f'Training command is {cmd_text}. ') ret = subprocess.check_call( cmd, env=dict(os.environ, MASTER_PORT=str(port))) if ret == 0: return True, 'Training finished successfully. ' else: return False, 'Training not finished successfully. '
Read the Docs v: latest
On Read the Docs
Project Home

Free document hosting provided by Read the Docs.